Free E-Newsletter!
Get Connected! Sign-Up Free Today

About Fuel Cell Applications

Fuel cell applications

Fuel cells are very useful as power sources in remote locations, such as spacecraft, remote weather stations, large parks, rural locations, and in certain military applications. A fuel cell system running on hydrogen can be compact, lightweight and has no major moving parts. Because fuel cells have no moving parts, and do not involve combustion, in ideal conditions they can achieve up to 99.9999% reliability. This equates to less than one minute of down time in a six year period.

A new application is micro combined heat and power, which is cogeneration for family home, office buildings and factories. This type of system generates constant electric power (selling excess power back to the grid when it is not consumed), and at the same time produce hot air and water from the waste heat. A lower fuel-to-electricity conversion efficiency is tolerated (typically 15-20%), because most of the energy not converted into electricity is utilized as heat. Some heat is lost with the exhaust gas just as in a normal furnace, so the combined heat and power efficiency is still lower than 100%, typically around 80%. In terms of exergy however, the process is inefficient, and one could do better by maximizing the electricity generated and then using the electricity to drive a heat pump. Phosphoric-acid fuel cells (PAFC) comprise the largest segment of existing CHP products worldwide and can provide combined efficiencies close to 80% (45-50% electric + remainder as thermal). UTC Power is currently the world's largest manufacturer of PAFC fuel cells. Molten-carbonate fuel cells have also been installed in these applications, and solid-oxide fuel cell prototypes exist.

However, since electrolyzer systems do not store fuel in themselves, but rather rely on external storage units, they can be successfully applied in large-scale energy storage, rural areas being one example. In this application, batteries would have to be largely oversized to meet the storage demand, but fuel cells only need a larger storage unit (typically cheaper than an electrochemical device).

One such pilot program is operating on Stuart Island in Washington State. There the Stuart Island Energy Initiative has built a complete, closed-loop system: Solar panels power an electrolyzer which makes hydrogen. The hydrogen is stored in a 500 gallon tank at 200 PSI,and runs a ReliOn fuel cell to provide full electric back-up to the off-the-grid residence. The SIEI website gives extensive technical details.

Protium, a rock band originating at Ponaganset High School in Glocester, Rhode Island was the world's first 'hydrogen fuel cell powered band'. The band was powered by a 1 kW Airgen Fuelcell from Ballard Power systems. The band has played at a number of fuel cell advocacy events including the Connecticut CEP, and the 2003 Fuel Cell Seminar in Miami beach.